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Prostate cancer histopathology 
using label‑free multispectral 
deep‑UV microscopy quantifies 
phenotypes of tumor 
aggressiveness and enables 
multiple diagnostic virtual stains
Soheil Soltani1, Ashkan Ojaghi1, Hui Qiao2, Nischita Kaza3, Xinyang Li2, Qionghai Dai2, 
Adeboye O. Osunkoya4,5 & Francisco E. Robles1,3,5*

Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains 
a significant clinical challenge. Here we develop an approach based on multispectral deep‑ultraviolet 
(UV) microscopy that provides novel quantitative insight into the aggressiveness and grade of this 
disease, thus providing a new tool to help address this important challenge. We find that UV spectral 
signatures from endogenous molecules give rise to a phenotypical continuum that provides unique 
structural insight (i.e., molecular maps or “optical stains") of thin tissue sections with subcellular 
(nanoscale) resolution. We show that this phenotypical continuum can also be applied as a surrogate 
biomarker of prostate cancer malignancy, where patients with the most aggressive tumors show a 
ubiquitous glandular phenotypical shift. In addition to providing several novel “optical stains” with 
contrast for disease, we also adapt a two‑part Cycle‑consistent Generative Adversarial Network to 
translate the label‑free deep‑UV images into virtual hematoxylin and eosin (H&E) stained images, 
thus providing multiple stains (including the gold‑standard H&E) from the same unlabeled specimen. 
Agreement between the virtual H&E images and the H&E‑stained tissue sections is evaluated by a 
panel of pathologists who find that the two modalities are in excellent agreement. This work has 
significant implications towards improving our ability to objectively quantify prostate cancer grade 
and aggressiveness, thus improving the management and clinical outcomes of prostate cancer 
patients. This same approach can also be applied broadly in other tumor types to achieve low‑cost, 
stain‑free, quantitative histopathological analysis.

Prostate cancer (PCa) is the most commonly diagnosed (non-cutaneous) cancer among men in the United  States1. 
According to the National Institute of Health SEER report, over 3.25 million men in the US are currently living 
with this disease, and ~1 in 6 men will be diagnosed with it over their  lifetime2. Other estimates, however, suggest 
that the prevalence of PCa may actually be much higher. Studies using autopsy analyses indicate that over half 
of all men above the age of 50 harbor some form of PCa, increasing the estimate of the number of men living 
with this disease to over 20 million in the  US3. This staggering prevalence makes it clear that, in a significant 
number of cases, PCa follows an indolent course; nevertheless, PCa is still the second leading cause of cancer 
death in men, with over 33,000 deaths in the US in  20204. Thus, while early and accurate PCa detection is criti-
cal, so too is the ability to objectively assess the tumors’ aggressiveness. Unfortunately, this remains a significant 
clinical challenge which has profound implications. On the one hand, there are a vast number of PCa patients 
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harboring indolent tumors who are either (i) under a ‘watchful waiting’ category (i.e., wait and see if the cancer 
progresses) and have to live with the uncertainty of potentially having an unsampled aggressive tumor, or (ii) 
deemed high risk but are ultimately over-diagnosed and over-treated. On the other hand, there are many PCa 
patients harboring aggressive tumors who are at risk of being under-diagnosed and under-treated—for these 
patients an incorrect diagnosis may be fatal.

In the current standard of care, once a diagnosis of PCa has been established, one of the most important fac-
tors in assessing tumor aggressiveness is the Gleason score (this also largely dictates treatment course)5–7. Here 
a histopathologist visually inspects hematoxylin and eosin (H&E) stained thin tissue sections and determines 
the two most common glandular/architectural patterns, which are assigned a grade from 3 to 5 (grades of 1 
and 2 are not diagnosed on needle core biopsies, and are non-cancerous). While accepted as the gold standard, 
the Gleason score (the sum of the two grades) is qualitative and subject to intra- and inter-observer variability. 
Some studies have reported inter-observer agreement (kappa values) ranging from ~40 to 70%, with a signifi-
cant portion of the discordant values dictating different treatment  paths8–10. H&E staining can also be highly 
variable and laboratory dependent, which undoubtedly contributes to observer variability, but also makes it 
challenging to extract quantitative parameters. Tissue fixation can also play a significant role in the variability 
of staining  procedure11–13. Thus, there is a significant need for novel technologies that can provide pathologists 
and clinicians with additional quantitative information regarding the aggressiveness of PCa, and thus prognosis 
for individual patients.

Advanced methods using genetic profiling, for example, provide a wealth of information but have shown 
limited success in predicting the prognosis of cancer  patients14–20. The poor predictive power may be attributed 
to the vast genetic heterogeneity of tumors, which makes it extremely difficult to identify a unique set of muta-
tions that provide reliable prognostic information. Alternatively, recent efforts have shifted towards exploring 
phenotypical “common-denominators” to the countless genetic and epigenetic alterations that lead to  cancer21–27. 
Phenotypical changes, including changes in metabolites, nuclear morphology, and nano-architecture, are more 
consistent across patients than the myriad of individual mutations and disrupted pathways underlying the disease, 
and can potentially better characterize tumors. This approach has shown very promising results for early cancer 
 detection21–25,28,29, and—to a more limited extent—assessing cancer  aggressiveness26,27,30.

In this work we introduce multispectral deep-UV microscopy as a novel tool for phenotyping PCa tissue 
sections, resulting in multiple virtual diagnostic stains and a unique quantitative biomarker that is predic-
tive of disease aggressiveness. Multispectral deep-UV microscopy offers rich endogenous, label-free, molecular 
information of important tissue biomolecules with subcellular spatial resolution using a fast, low-cost imaging 
 configuration31–36. To define this novel biomarker (or phenotypical continuum), we couple deep-UV microscopy 
with an unsupervised analysis of the molecular  signatures30. Importantly, we find that patients with the most 
aggressive forms of prostate cancer express a ubiquitous glandular phenotypical shift, even in glands that appear 
to be less aggressive. We further introduce multiple virtual “optical stains” (or “biochemical stains”) of tissue 
slides that highlight important components for disease diagnosis such as nuclei, cytoplasm, stroma, basal layer, 
nerves, and inflammation. The unique insight provided by the method is not available with current histological 
methods. In addition, we leverage recent advances in deep learning to translate our multi-spectral deep UV 
images into virtual H&E-stained images which show a high degree of correlation with the gold-standard H&E 
histopathological images of prostate tissue. These capabilities are important because they show that multiple 
types of “stains” can be rendered from a single unstained section, including novel diagnostics maps and the 
gold standard H&E. This is potentially time and resource-wise efficient as it would obviate the need for chemi-
cal reagents, time consuming processes, multiple scans, or trained personnel. Plus, the unstained tissue sections 
remain available for any additional profiling (e.g., immunostaining, RNA labeling, etc.) or archiving without 
alterations. Results from this work have significant implications towards improving diagnosis and management 
of prostate cancer. Further, this same approach may be widely applicable to improve histopathological analysis 
in many other tissue types and diseases.

Results
Deep‑UV microscopy of prostate tissue sections. Details of the multispectral deep-UV microscope 
are provided in the methods and materials section. Images were acquired from unlabeled fixed radical prosta-
tectomy tissue samples, which were sliced (~5 µm thick) and mounted on quartz microscope slides. Images were 
acquired from histologically important regions containing structures with benign tissue, inflammation, stroma, 
high grade prostatic intraepithelial neoplasia (HGPIN), and glands with various grades of prostate cancer (Glea-
son grades 3, 4, and 5). Eighty-seven regions of interest were acquired from 15 patients. Each region was ~1 mm 
X 1.5 mm, acquired with a spatial resolution of ~300 nm. Multispectral images were taken at four key wave-
lengths, including 220 nm, 255 nm, 280 nm, and 300 nm (see Fig 1a). These spectral regions are chosen because 
the 255 nm and 280 nm bands correspond to the absorption peaks for nucleic acids and proteins, respectively, 
and the 220 nm band has contributions from many molecules including the two  aforementioned36. The 300 nm 
band does not correspond to an absorption peak of any endogenous biomolecule, but is chosen as an indicator 
of tissue scattering which has been applied as a surrogate biomarker of tissue nano-architecture28,36–39.

To effectively represent the endogenous molecular tissue composition, we chose two methods to process 
the multispectral data in parallel: The first uses a geometrical representation of principal component analysis to 
identify dominant molecular species in an unsupervised manner. This approach leads to multiple color schemes 
(i.e., optical stains) which highlight important tissue structures and can also provide some degree of cancer 
grade differentiation. The second processing method (Fig. 1f,g) uses an unsupervised content-preserving Deep 
Neural Network to show that the same multispectral data are sufficient to produce high quality virtual H&E 
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stained images which is the gold-standard in pathology. The details of the Neural network are explained in the 
next section.

In the first method, the multispectral data were processed using a geometrical representation of principal 
component analysis (PCA), which is an unsupervised  method30. In this process, approximately 130 million 
spectra from select representative regions were used to calculate the principal components (PCs). Figure 1b 
shows the resulting orthogonal PCs. It is important to note that these vectors, while purely mathematical in 
nature, in fact resemble the absorption and scattering spectral behavior of biological  tissues36. For example, the 
first principal component, PC1, shows a unipolar, monotonically decreasing behavior that is consistent with the 
expected response of tissue scattering. PC2 and PC4 show peak responses that correspond to protein absorption, 
while PC3 shows an inverted peak that is in agreement with the absorption from nucleic  acid36. Nevertheless, 
projections of the spectra onto these PCs do not uniquely correspond to these molecules, and do not prominently 
highlight important tissue structures alone, as seen in Fig 1c.

To obtain a more natural representation of the endogenous tissue composition, we transform these data 
from a Cartesian coordinate system with only the first three PCs (which possess over 99% of the data variance) 
to spherical coordinates (see Fig 1d). (The same procedure can be applied with any combination of three PCs.) 
In this representation, the azimuth (θ) and elevation (ϕ) angles contain all the information about the shape of 
the spectra; in other words, these two dimensions contain nearly all the available biophysical and biochemical 

Figure 1.  Processing of multi-spectral deep UV images using the two proposed methods. Top: geometrical 
representation of principal component analysis. Bottom: Unsupervised content-preserving transformation 
for optical microscopy. (a) A representative multi-spectral deep UV transmission data cube taken at 220, 
255, 280 and 300 nm. (b) The 4 principal components resulting from 130 million spectra from representative 
select regions. (c) Calculated projections of the data cube on the principal components. (d) Schematic of data 
conversion from Cartesian to Spherical coordinates. (e) Representative 2D histogram of a data cube using 
azimuthal and elevation coordinates. (f) Schematic of trained Neural network. (g) Representative virtually H&E 
stained prostate tissue (Network output).
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information. The radius, on other hand, serves as a relative measure of the concentration. Thus, images can be 
represented in a hue-saturation-value (HSV) color space, with the hue given by the angular coordinates (either 
elevation or azimuth angle, as shown in Fig. 1e), the value set by the radius, and the saturation fixed to 1.

An important feature of this geometrical PCA representation is that each point in the 2D histogram of the 
elevation and azimuth angles (Fig. 1e) represents a unique spectral response, and hence different molecular and/
or biophysical makeup. Thus, by color-coding images based on the angular distributions, we are able to assign a 
unique hue to spatial regions with similar composition. The resulting “optical stains” enhance contrast among 
various structures in prostate tissue sections which can be leveraged, along with H&E, for diagnostic applications.

Figure 2 shows two types of “optical stains” that highlight important tissue structures. In the first (Fig. 2a), 
the elevation angle is used to encode hue which yields the most prominent contrast for cell nuclei, depicted in 
green. This is consistent with the general behavior of the PCs, as the elevation angle in this case corresponds 
to a ratio of the 3rd PC (which resembles the inverted absorption peak from nucleic acids) relative to both the 

Figure 2.  A representative demonstration of two “optical stains”. Colorization scheme using (a) principal 
components 1, 2 and 3 in Elevation direction and (b) principal components 2,3 and 4 in Azimuth direction. 
Scale bar: 150 μm. Comparison of the two color-coding schemes for (c) a nerve, (d) a region with inflammation 
(e) an entrapped benign prostate gland surrounded by Gleason Grade 3 and 4 cancer glands. (f) Prostate cancer 
glands with Gleason Grade 3 next to a Gleason Grade 4 glomeruloid gland. All rectangles are 210 µm x260µm.
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1st and 2nd PCs (which correlate with scattering and protein spectral signatures, respectively). Thus, nuclei 
are mapped to regions with negative elevation angles. Further, in this representation, the stroma shows a dark 
purple color (and has a positive elevation angle). In the second colorization scheme (Fig. 2b), we encode hue 
based on the azimuthal angle derived from a 3D space from the 2nd, 3rd and 4th principal components. Here 
the hue encodes differences between proteins and nucleic acid, without contributions from scattering (1st PC). 
The resulting images (Fig 2b) exhibit some degree of nuclear contrast (depicted in red), but most prominently 
show the stroma in bright yellow. Figure 2c–f highlight selected regions from a nerve surrounded by prostate 
cancer glands (Fig. 2c), a highly inflamed region (Fig. 2d), an entrapped benign prostate gland next to cancer 
glands (Fig. 2e), and prostate cancer glands (Fig. 2f).

Figure 3 shows additional examples that emphasize the ability of these label-free optical stains to provide 
unique contrast among different structures, including benign tissues (Fig. 3a), HGPIN (Fig. 3b), Gleason 
grades3-5 (Fig. 3c–e), necrosis (Fig. 3f), inflammation (Fig. 3g), and even red blood cells (Fig. 3h). Images from 
H&E-stained tissues (from adjacent sections) are also shown for comparison. While not in perfect one-to-one 
agreement, in general, the overall tissue structure observed with H&E is preserved in the label-free UV images, 
including clear contrast between nuclei and stroma. An important distinction, however, is that the informa-
tion derived from UV microscopy is quantitative. Further, with the UV images, subtle differences in hue can 
be observed in the various structures, including glands with different Gleason grades, inflammation, necrosis, 
and HGPIN.

Prostate cancer diagnosis and grading using deep‑UV microscopy. Using a 3D space defined by 
the first three PCs, we defined a third “optical stain” by encoding hue using the azimuth angle (Fig. 4). These 
maps highlight contributions from light scattering (from PC1) relative to both proteins and nucleic acid (PC2 
and PC3, respectively). We note that scattering variations arise from genetic and epigenetic perturbations that 
results in micro and/or nano-scale alterations in intracellular milieu, such as the cytoskeleton, ribosomes, chro-
matin, mitochondria, and collagen fibrils that are known to be altered in field  carcinogenesis37,38,40–43. Further-
more, protein and nucleic acid alterations have also been well documented throughout the progression of pros-
tate  cancer44–48.

The resulting image representation (i.e., optical stain) does not exhibit contrast to structures conventionally 
used in histopathology (e.g., nuclei, cytoplasm, stroma, etc.); instead, we find that this representation encodes 
for a glandular phenotype that correlated with malignancy. Figure 4 shows two examples from patients with 
intermediate-grade cancer. Here benign glands possess a blue hue, while glands with cancer (Gleason grades 3 or 
4) exhibit a relative shift captured in green to red hues which represents an increase in nucleic acid and protein 
content, potentially from cell overgrowth  byproducts44,49–55. In these maps, the glands were segmented for clarity 
(performed manually for simplicity here, though this process can be  automated56,57). Again, the change in color 
represents alterations in the scattering properties relative to protein and nucleic acid content, all of which have 
been implicated in early-stage alterations of cancer, as well as metastatic  disease37,38,40,43,46. Thus, the azimuth 
angle from a geometrical representation of the first three PCs effectively yields a phenotypical continuum that 
can be applied as a surrogate biomarker of prostate cancer malignancy.

It is worth highlighting important features in Fig. 4. Figure 4a,b show a set of pseudo-neoplastic benign glands 
(blue arrows) that are not well formed, meaning they express slight cytological and morphological variations 
such as cytoplasm clearing that classifies them as a mimicker of prostatic adenocarcinoma (typically of Gleason 
grade 3). However, the existence of basal cells around the glands as well as the papillary infoldings of the gland 
differentiates them from carcinoma. And indeed, the malignancy optical stain clearly indicates that these glands 
are benign and distinct from Gleason grade 3 and 4 glands (green and red arrows, respectively). Figure 4c,d 
show benign central zone histology glands (blue arrows) surrounded by Gleason Grade 3 cancer glands (green 
arrows). Central zone histology glands are potential mimickers of HGPIN and Gleason Grade 4 cancer glands 
(Cribriform) and are often difficult to differentiate from cancer  glands58,59; nevertheless, the malignancy optical 
stain identifies these glands as benign. Further, Fig. 4d clearly shows a gradual color gradient, and hence phe-
notypical continuum, from left to right as the glands progress from benign to cancer. It is important to note that 
even though third optical stain shows a higher degree color variability/noise, the general meso-scale behavior 
clearly correlates with malignancy. It is clear that the information provided by this optical stain is independent 
and complimentary to the gold standard H&E stain.

Supplemental Fig. S2 shows additional examples from patients with aggressive disease (i.e., those contain-
ing Gleason grade 5 glands). These samples possess a unique response which is discussed in more detail below.

To investigate the properties of this phenotypical shift further, we analyze the cumulative behavior of benign 
glands and cancerous glands with the same Gleason grade for each patient. In this process, cumulative 2D his-
tograms were generated for each type of gland (benign and Gleason grades 3-5) for each patient, then data were 
integrated across elevation angle, and finally the center of mass (CoM) of the resulting azimuth angle distribu-
tions were computed. This value effectively quantifies the hues in the malignancy optical stain shown in Fig. 4. 
Figure 5 shows the results, with Fig. 5a showing the absolute azimuthal CoM for all the benign glands for each 
patient. This value is then taken as a basis for all other (cancerous) gland types for each patient, thus providing 
a personalized reference point for a malignancy biomarker.

Figure 5b,c show the relative shifts in the CoM of cancerous glands relative to the benign glands of each 
patient (absolute shifts are shown in Fig. S3). Self-calibration with respect to benign gland of each patient is nec-
essary to reduce significant inter-patient variability which can be very large and, if unaccounted, can potentially 
obscure signals of interest. A remarkable result of this personalized biomarker is that patients with the most 
aggressive form of prostate cancer (i.e., those containing Gleason grade 5 glands) exhibit a ubiquitous glandular 
phenotypical shift in the opposite direction as patients with less aggressive forms of prostate cancer. That is, for 
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Figure 3.  Comparison of the two “optical stains” with corresponding H&E-stained tissue scans from various 
prostate tissue structures. (a) Benign gland. (b) High grade Prostatic intraepithelial neoplasia (PIN) region. (c) 
Cancer region with Gleason Grade 3 glands. (d) Cancer region with Cribriform Gleason Grade 4 region. (e) 
Region with Gleason Grade 5. (f) Region with necrosis inside a Gleason Grade 5 cancer gland. Necrosis is clearly 
distinguishable from the cancer cells on the left side of the image. (g) Inflammation. (h) Red blood cells.
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patients with aggressive cancer, both Gleason grade 5 regions and lower Gleason grade regions (3 and 4) show 
a negative azimuth CoM shift, which is the opposite behavior compared to patients with less aggressive tumors. 
This unique and ubiquitous shift—only present in aggressive prostate cancer—may be attributed to higher con-
tributions from scattering which is indicative of changes in tissue organization at the nanoscale level. Similar 
behavior has been reported in other studies of the scattering properties of cancerous  tissues37,38,40–43 and is likely 
related to the field effect of carcinogenesis.

Figure 4.  Comparison of malignancy maps from different prostate regions with corresponding H&E scans. 
Insets show the 2D histograms for comparison. As clearly evident from Fig. 4 the malignancy optical stain 
shows diagnostic capabilities complimentary to H&E, where only morphological parameters are considered. 
In (b and d) we have manually removed stroma and inflammation regions to aid visibility. The cell-size red 
regions on the edges of the glands are originating from two sources: 1-ill-formed fused type Gleason Grade 4 
regions have spread around benign glands and in fact it is an indicative of existence of cancer. These regions 
are sometimes missed by pathologists in H&E analysis 2- Existence of inflammation cells that were impossible 
to remove with manual segmentation. These inflammation cells are limited in number and do not contain any 
diagnostically important information and they are mostly in stromal region. (Scale bar: 200 μm).
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UTOM for label‑free H&E colorization with UV microscopy. The novel optical stains presented 
above provide unique insight into tissue structures based on endogenous molecular composition, nanoscale 
structures, and PCa aggressiveness; nevertheless, H&E-contrast is imperative for PCa diagnosis and grading. 
While additional tissue can be stained with H&E, it is also possible to translate the UV images into virtual H&E 
images to enable visualization of the same exact specimens, down to the subcellular level, in different diagnos-
tic formats/stains. This label-free pipeline also avoids cumbersome, time-consuming, and complex procedures, 
avoids stain artifacts and variations that are common with H&E, and finally, the original unstained tissue can be 
preserved for further processing or archiving.

To translate the label-free UV images into virtual H&E images, we apply a recently developed unsupervised 
content-preserving transformation for optical microscopy (UTOM) deep neural  network60. UTOM adapts the 
general framework of cycle-consistent generative adversarial networks (Cycle-GAN) which can transform images 
from one domain into another without requiring pixel-level paired data. In UTOM, a forward and backward 
GAN are trained simultaneously to learn a pair of opposite mappings between the UV and H&E image domains, 
as shown in Fig 6a. In this process, a cycle-consistency loss constrain, and a pair of saliency constraints are 
imposed to correct for mapping direction, which avoids distortions (Fig. 6a)60. In the training process, the overall 

Figure 5.  Absolute and relative CoM azimuthal angles serves as a personalized malignancy biomarker and 
reveal unique glandular phenotypes. (a) Comparison of absolute maximum peak azimuthal coordinates 
of integrated histograms of benign regions for 15 patients. (b) Cumulative boxplots for calculated relative 
azimuthal shift for different prostate cancer grades in 15 patients. (c) Barplots for calculated relative azimuthal 
shift for different prostate cancer grades in 15 patients with the benign region used as reference for each patient. 
In (b and c) it is clear that the more aggressive phenotypes have an opposite shift even for lower grades of cancer. 
In (b) the red dotted line is the threshold of the shift for the more aggressive cancer regions on the opposite 
direction.
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network converges when the discriminators cannot differentiate between images produced by their generators 
(i.e., when the two GANs reach equilibrium; see Fig. 6b). Once trained, new images can be fed into the network 
and transformed into the desired domain (Fig 6c). This approach has been used for image restoration (e.g., resolu-
tion enhancement, removing distortions), for virtual fluorescence labeling of label-free phase images, and H&E 
virtual staining of autofluorescence  images61–63. The training set for this work comprised of 54 regions from 10 
patients, while the test set (transformation group) contained 21 regions from the remaining 5 distinct patients. 
More details on the training process and final image translation are provided in methods and materials section.

Figure 7a–d show two representative examples of UV translated (virtual H&E) prostate tissue images from 
the test set, along with their corresponding adjacent H&E-stained sections. The figures clearly show that the 
UV translated images are nearly identical to the H&E-stained tissues sections, with the most marked differences 
arising from the fact that the images are from adjacent sections. Specifically, the virtual H&E images preserve 
or improve several important features that play an important role in PCa diagnosis: First, as shown in Figs. 7b, 
f, j and n the UV translated images successfully recapitulate the appearance of basal cells and basal cell lamina 
around benign glands which are of utmost importance for PCa diagnosis (corresponding glands on H&E image 
are shown in Figs. 7e, i and m for comparison). This feature is also observed in Fig. 7l where an entrapped benign 
gland is clearly differentiated from surrounding cancer regions (the adjacent H&E stained image is shown in 
Fig. 7k). Second, PCa regions shown in Figs. 7g, h, o and p depict luminal epithelial nuclei with more consistent 
(and arguably improved) contrast in the UV translated images compared to their corresponding H&E-stained 
sections. These types of structures are especially important in differentiating cancer glands from other mimick-
ers of cancer where the structure of the gland is slightly disrupted. Finally, the appearance of the clear or pale 
eosinophilic cytoplasm as well as hyperchromatic nuclei are well preserved, which in some cases can be indica-
tive of PCa Gleason Grade 4.

Virtual H&E evaluation. To assess the quality of the UV translated, virtual H&E images compared to 
the gold standard H&E-stained images, we conducted a panel study with 4 board-certified/board-eligible his-
topathologists. Here the pathologists evaluated a total of 42 large area images (~1 mm × 1.5 mm), half of the 
images (21) were images of H&E-stained tissue sections and the other half (21) were virtual H&E from the same 

Figure 6.  Schematic of colorization process and the UTOM method For the transformation from UV to HE, 
input channels N = 4, and output channels M = 3. Each coral rectangle represents a feature map extracted by 
corresponding convolutional kernels. The generator is a multi-layer residual network with downsampling input 
layers and upsampling output layers. The discriminator (PatchGAN classifier) uses multiple strided convolution 
for abstract representation. It generates a matrix, in which each element corresponds to a patch in the input 
image. The ultimate output is the average of the loss over all patches.
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regions (adjacent slices), all from the UTOM test set. Two pathologists (group 1) were assigned a set of 21 images 
comprising a mixture of virtual and stained H&E images, and the other two pathologists (group 2) were assigned 
the complimentary set, meaning images from the same regions but switching virtual H&E images with the 
images of stained H&E sections, and vice versa (no pathologist viewed the same region in both the virtual H&E 
and H&E-stained formats). While reviewing the images, pathologists were asked a series of questions regarding 
the quality of the images, with numerical scores ranging from 1 (poor) to 3 (excellent). They were also asked to 
provide a Gleason score for each region.

Results of the panel study are summarized in Table 1. Data show that the UV translated virtual H&E images 
and the H&E-stained tissue section images have very similar quality as assessed by the pathologist panel. With 
the exception of the nucleolus quality, which was evaluated slightly lower in the virtual H&E format, all other 
structures were assessed to have the same quality between the two modalities, with no statistically significant 
differences. The gland quality, which is of particular importance for PCa diagnosis, was deemed nearly identical 
between the two methods, as was the cytoplasm quality. Most importantly, the pathologists’ diagnostic confidence 
was very similar for both methods (and not statistically different). We attribute the small difference in nucleus 
quality to the presence of lipid-laden macrophages (Xanthoma), mesonephric remnants, and hyperchromatic 
nuclei in a few regions with inflammation, which have a slightly disrupted visible quality in the translated images. 
However, (1) these are not diagnostically meaningful (which is likely why the diagnostic confidence remained the 
same between the two groups, even though the nucleus quality was slightly lower in the UV translated images), 
and (2) the nucleus quality can be improved with additional training.

Figure 7.  Comparison of translated virtual H&E images and corresponding H&E stained scans. Examples of 
(b)–(d) Two predicted output virtual images (a) and (c) along with their reference H&E images. (e)–(p) show 
three selected zoomed regions for each area. These regions have been selected to compare features on both H&E 
and translated virtual H&E images.
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We also calculate the inter-group concordance for grade group decisions using the H&E and virtual H&E 
images. The results (Table 1) show inter-observer variability at similar levels to what has been reported in previ-
ous  studies64–68. Importantly, however, the concordance in Gleason grade decisions is very similar between the 
UV translated virtual H&E images and the H&E-stained tissue section images within each group. These results 
strongly suggest that the format of the images (virtual H&E and H&E stained) did not play a role in the concord-
ance levels. It is also worth noting that the agreement between the two most senior, board-certified pathologists 
was very high—they agreed in 17 out 21 regions even though they were viewing each region in different formats 
(one was in group 1 and the other in group 2). The 4 regions of discordance were between boarder line Gleason 
grades 3 and 4.

Finally, we calculate the accuracy of the Gleason scores provided by the pathologists for both the H&E and 
virtual H&E images. For this task, we first select a “ground truth” given by the decision of one of the two senior 
board-certified pathologists (whichever one of the two whose decision was based on the stained H&E section for 
a particular region was selected). Results show that the accuracy of the Gleason grades using H&E and virtual 
H&E images are similar (i.e., not statistically significant), with 72.5% accuracy for H&E and a slightly higher 
77.45% accuracy for virtual H&E (p-value = 0.24). Alternatively, only using the regions where both senior, 
board-certified pathologists agree (17 out 21) and using their assessment as “ground truth”, we find an accuracy 
for Gleason grade of 73.6% for H&E and 81.6% for the UV translated, virtual H&E images (again, differences 
not statistically significant, p-value=0.42). This is a more robust “ground truth” but omits any data lacking con-
cordance from the two senior pathologists. Nevertheless, regardless of the selected “ground truth”, the grading 
accuracy values show that the proposed UTOM method is capable of transforming the multispectral deep UV 
data into high quality virtual H&E images, with a diagnostic accuracy statistically equivalent to the gold standard.

Discussion
In this study, we have introduced multi-spectral deep UV microscopy as a novel, fast and reliable method to 
capture quantitative molecular and nano-scale information from unlabeled prostate tissue sections. We have 
utilized the unique UV spectral signature combined with an unsupervised spectral analysis to transform the 
multi-spectral data cubes into phenotypical maps or “optical stains” with subcellular spatial resolution. The 
spectral analysis suggests that the main contributing factors to these maps arise from scattering which serves as 
an indicator of tissue nano-architecture, and from proteins and nucleic acids. However, we do not rule out con-
tributions from other  molecules36. Maps derived primarily from spectral signatures that correlate with proteins 
and nucleic acids provide high contrast among various critical tissue components, including nuclei, cytoplasm, 
basal layer, stroma, and glandular tissue, which can enhance our ability to recognize anomalies in prostate tissues.

While the “optical stains” derived from proteins and nucleic acids correlate well with the overall structures 
observed with the gold standard H&E stains, completely new structures are observed when incorporating the 
scattering signatures in conjunction with proteins and nucleic acids. These maps are likely indicative of micro 
and/or nano-scale alterations in the intracellular milieu, such as the cytoskeleton, ribosomes, chromatin, mito-
chondria, and collagen  fibrils37,38,40–43. Along with protein and nucleic acid  alterations44–49,51,53,55, changes in these 
structures have been implicated in the field effect of carcinogenesis. Indeed, here we observe that these structures 
map benign glands to different hues compared to cancerous glands, effectively yielding a “malignancy map.” By 
quantifying these relative phenotypical shifts, we also find that cancer patients with the most aggressive forms of 
prostate cancer (those with Gleason grade 5 glands) possess a ubiquitous and unique phenotypical shift compared 
to patients with less aggrieve cancers.

These results have significant implications. Because less aggressive cancer glands (e.g., Gleason grade 3) pos-
sess a different phenotypical shift in patient harboring an aggressive cancer (those with Gleason grade 5 glands), 
this phenotype or biomarker may help identify patients with aggressive forms of prostate cancer even if initial 
biopsies miss the more aggressive regions. These results could have profound implications for the analysis of 
random prostate tissue biopsies which cannot cover the entire organ and are hence susceptible to missing cancer 
regions. It is worth emphasizing that this is achieved by defining a continuous quantitative marker, that evalu-
ates the malignancy level of each gland with respect to benign glands of the same patient, and avoids the use of 
Gleason grade (though we use Gleason grade to establish a correlation to this accepted standard).

While this continuous biomarker does not show appreciable differences between Gleason grade glands 3 
and 4, incorporating morphological features along with this biomarker may potentially improve our ability in 
identifying/grading prostate cancer. For instance, quantitative information from the UV spectra and derived 
optical maps can help differentiate anomalous benign glands that mimic cancer and can be difficult to detect. 
Furthermore, all the images, supported by their histograms of the molecular signatures, show that healthy tissue, 

Table 1.  Comparison of translated UV images with H&E scans. N.S.: Not statistically significant. *p < 0.05.

Parameter H&E Virtual H&E Statistical significance

Nucleus quality (scale of 3) 2.57 2.32 *

Cytoplasm quality (scale of 3) 2.45 2.42 N.S

Gland quality (scale of 3) 2.60 2.57 N.S

Diagnosis confidence (scale of 3) 2.26 2.16 N.S

Inter-group concordance for group 1 81.82% 85% –

Inter-group concordance for group 2 60% 50% –
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disease regions and their underlying composition span a continuum rather than a discrete distribution. This 
is in line with our understanding of disease  progression69–72 and may help better characterize prostate cancer 
compared to discrete labels (as with Gleason grades). This new information may also help assess a more ideal 
personalized treatment course for patients.

These results, while from a small sample size, lead to more fundamental questions: Do patients need to have 
this unique malignant phenotype to develop the aggressive form of PCa? If so, can it be detected even before 
aggressive cancer develops? How early? Or is there a ubiquitous switch across the gland that occurs once the 
disease progresses to this more aggressive form? The answer to these questions requires further understanding 
of this malignant phenotype and will guide our future work as a larger sample size is analyzed.

Finally, using a state-of-the-art deep learning algorithm, UTOM, we showed that the UV images can be 
readily translated into virtual H&E images that accurately mimic the structures and colors present in the gold 
standard bright-field microscopy images of H&E-stained prostate tissue sections. This process is advantageous 
from a histopathology viewpoint because multiple diagnostic (virtual) stains can be produces from the same 
exact regions. The process also avoids the need for laborious, time-consuming, and costly chemical staining 
procedures, avoids staining viability, and preserved tissue for other uses. A panel of board-certified/board-eligible 
pathologists assessed the quality and diagnostic potential of the UV translated images to be equivalent to the 
gold-standard H&E-stained tissue section images.

Furthermore, other optical technologies have shown very promising results to help improve histopathology, 
using methods such as UV excited florescence/auto-florescence61,73,74,  infrared21,29,75 and Raman  Scattering76,77. 
However, there are important limitations associated with each approach. For instance, infrared imaging technolo-
gies provide rich molecular information, but have complex and expensive equipment, are relatively slow, and 
lack critical subcellular and cellular level resolution. UV excited florescence methods have demonstrated rapid 
visualization of subcellular H&E level histology in thin or thick tissues and have garnered a lot of  attention73,78. 
However, these methods are (1) not quantitative, (2) often require exogenous agents, and (3) to our knowledge 
have not been shown to provide novel diagnostic information. Similarly, auto-florescence based methods have 
been encouraging to generate label-free H&E-like images but auto-florescence intensity differs from patient 
to patient, the signal to noise ratio is low, and level of endogenous molecular contrast is limited, all of which 
increases uncertainty and hence the number of misdiagnosed disease  cases61,74,79,80. Raman microscopy/spec-
troscopy methods provide rich molecular content and allow differentiation of malignant tissue. However, Raman 
scattering is a weak process that requires long acquisition times and signal can easily be obscured by fluorescence. 
Nonlinear coherent Raman imaging is much faster but systems are complex and expensive. Finally, most of these 
optical technologies suffer from complexities in how to integrate into current pathology practice workflows.

The label-free multi-spectral deep UV microscopy approach proposed here shows unique capabilities which 
overcomes many of the limitations of other methods described above or which can be complimentary to help 
improve diagnosis and grading of prostate cancer. This approach is high-resolution (~300 nm) (which provides 
approximately two times or more better resolution than standard H&E practice and commercial digital scan-
ners), provides rich molecular and nanoscale quantitative information, and it is simple and low-cost (~$20k; 
and the UV transparent quartz slides used here could also be replaced by cheap UV transparent polymers). The 
approach is also widefield with exposures of ~100ms per field of view (~170 μm × 230 μm) making it relatively 
fast. The estimated total acquisition time for all 4 wavelengths with our current system for a 10 mm × 10 mm 
slide is ~240 seconds which yields a throughput of 15 slides/hr (for reference, commercial digital pathology 
scanners have a throughput of 20–80 slides/hr). With further improvements in the setup such as automated 
scanning algorithm and auto-focusing, and/or using lower resolution/magnification to match standard practice 
(which would yield much larger fields of view per acquisition), much higher scanning rates are achievable. Such 
fast scanning rates suggest that our proposed deep UV microscopy method is quite feasible for routine clinical 
practice and potentially surgical pathology. This approach could also be combined with other state-of-the-art 
structure-based neural networks recently introduced to help automate  diagnosis67,81.

In conclusion, we have introduced label-free multispectral deep-UV miscopy to help analyze prostate cancer 
histopathology. We have demonstrated the unique capabilities of this method, which can help improve diagno-
sis and management of prostate cancer. Finally, this same quantitative approach can be applied broadly across 
histopathological analysis of many tissue types and diseases. To our knowledge, this is the first demonstration 
of the utility of transmission-based deep UV microscopy for the analysis of tissue sections and histopathology. 
Future work will focus on imaging and analyzing a larger sample size (prostate and other tissue types) to further 
show the robustness of this method.

Materials and methods
Deep‑UV multispectral microscopy set up. The deep UV transmission images were obtained using a 
microscopy system that consists of a plasma-driven broadband light source (Energetiq, EQ-99X) that provides 
a continuous spectrum from 200 nm to 2 μm. The output light from the source is focused on the sample using 
an off-axis parabolic mirror (Newport). A long-pass dichroic mirror is used to filter out the wavelengths of 
light above ~ 550 nm. For each region of interest, a multispectral data cube is captured using bandpass filters 
(bandwidth = 10 nm) centered at 220, 255, 280 and 300 nm. The filters are placed on a filter wheel to change the 
imaging wavelength of the system. A 0.5 N.A. UV objective (Thorlabs LMU-40X-UVB) is used to collect the 
transmitted light and a biconvex (f = 150 mm) lens is used to relay light onto a UV camera (PCO. Ultraviolet). A 
schematic of the setup is shown in Fig. S1. For each acquisition, the camera integration time was ~100 ms. Each 
captured region of interest represents a field of view of about ~170 μm × 230 μm. The resolution of our system 
is ~300 nm. In this work, we studied regions that were comprised of 64 tiles in the form of an 8 by 8 mosaic 



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9329  | https://doi.org/10.1038/s41598-022-13332-9

www.nature.com/scientificreports/

image. To enable reliable stitching, each tile has ~15% overlap with its neighbors. The final resulting region is 
approximately ~1 mm × 1.5 mm.

Sample collection and preparation. Paraffin-embedded formalin-fixed blocks from radical prostatec-
tomy specimens were obtained from 15 prostate cancer patients. All the patients had not received any neoadju-
vant therapy prior to radical prostatectomy. The Gleason scores (Grade groups) and tumor stages were assigned 
by Urologic Pathologists in all cases. Next thin slices (~5 microns thick) of the tissue blocks were mounted on 
quartz slides and were deparaffinized by incubating the slides in Xylene bath for 5 minutes. The samples were 
then placed in 95% Ethanol for 3 minutes to remove Xylene and washed with dionized water. One section was 
used for UV imaging and a second section was stained with H&E and imaged with a bright field microscope.

All tissues are de-identified from archived tissue block for Emory University Hospital (n = 10) or a commer-
cial vendor (Biomax) (n = 5). The Institutional Review Board of Georgia Institute of Technology reviewed and 
approved all protocols (H16343 protocol). Informed consent was obtained from all patinets and/or their legal 
guardian(s). All methods were carried out in accordance with relevant guidelines and regulations.

Data processing. To study the molecular content of the imaged tissue slides, different wavelengths in each 
captured multispectral data cube were registered in MATLAB (Mathworks) Environment. Next, in order to 
have a single wide-field UV image we used an image stitching code (MIST)82, developed by National Institute of 
Standards to stitch the 64 tiles captured separately.

To calculate the principal components (PCs) of the multispectral prostate tissue images, we selected 90 regions 
that yielded approximately ~130 million spectra which represented all biologically important structures in pros-
tate tissue. Next, we performed PCA in MATLAB to calculate the 4 principal components of the selected regions.

To generate color-coded images, we calculated the projections of the multispectral UV data on PC 1, 2, 3, 
and 4, respectively. Next, we converted the resulting projection vectors (Proj 1, Proj 2, Proj 3) and (Proj 2, Proj 
3, Proj 4) from Cartesian coordinates to Spherical coordinates (Azimuth (θ), Elevation (ϕ), Radius (R)), where 
Proj i represents the projection of UV data on PCi. Finally, to get the geometrical representation of the PCA, we 
calculated a two-dimensional histogram of the azimuth (θ) and elevation (ϕ) angles for each case. Lastly, color-
ized the images using a Hue-Saturation-Value (HSV) color space, where the hues are assigned based on either 
azimuth or elevation angle, the value is set by the radius and the saturation is set to 1.

Calculation of the azimuthal shifts. To calculate the azimuthal shifts that are correlated with prostate 
cancer grades, first we annotated all the corresponding H&E images with appropriate Gleason grades. The anno-
tations were reviewed and approved by a board-certified Urologic pathologist. Next, for each patient, the multi-
spectral UV data were manually segmented according to the approved H&E annotations to extract all the pixel 
spectra that have the same Gleason grade. Once all the grade specified spectra were collected, we calculated 
cumulative 2D histograms using Principal components 1, 2, and 3 for each Gleason grade category as described 
in the data processing section. Finally, we integrated each 2D histogram in elevation direction to generate the 
azimuth dependent graph of molecular content, and recorded the Azimuth coordinates center of mass. We 
repeated this procedure for all the captured regions from all the patients.

Virtual H&E Colorization using UV microscopy images. To perform machine learning process, we 
used the label-free UV images of the unstained tissue sections from 15 patients from all 4 wavelengths (220, 
255, 280 and 300 nm). For each captured region the corresponding H&E-stained image from adjacent slice were 
used as a reference. All the UV and H&E images were scaled to the same pixel size (90 nm). Next, we used 54 
regions from 10 patients that contained representative biologically structures in prostate tissue, as the training 
data-set for our model (~13.5 billion spectra). The remaining regions (21) from the other 5 patients were used 
as the testing data set to evaluate the color transformation model. The important point about the testing data 
set is that the regions come from completely independent patients and no regions from testing patients are used 
in the training process. In the training dataset, the 4-channel UV data and H&E images (RGB channels) were 
randomly cropped into 512 × 512 patches. The total numbers of UV and H&E patches are 64,336 and 81,667, 
respectively (Fig. 6a). During the test phase, the UV images were first partitioned into small patches with 25% 
overlaps. After a model was trained, patches from the previously unseen 5 patients were then fed into the model 
to generate the corresponding H&E patches. To finally form a large area virtual H&E image (each ~1 mm × 1.5 
mm), we cut out the boundaries (half of the overlap) of the generated patches and stitched the remaining parts 
together one by one.

Virtual H&E Color normalization. To remove undesirable color variations of the H&E-stained histologi-
cal images, which result from differences in staining protocols, slide scanners and other factors, we adopted the 
structure-preserving color normalization (SPCN) method proposed by Vahadane et al83. For a given image, we 
first estimated its stain density maps and color appearances via sparse non-negative matrix factorization. Then, 
we combined the stain density maps with a stain color basis of an arbitrary target H&E image so as to change 
only the color appearances while preserving the structure of the source image.

UTOM method. To produce virtual H&E colorized images, a forward GAN and a backward GAN are 
trained simultaneously to learn a pair of opposite mappings between two image domains. Along with the cycle-
consistency loss, a saliency constraint is imposed to correct the mapping direction and avoid distortions of the 
image content. For each domain, a discriminator is trained to judge whether an image is generated by the genera-
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tor or from the target domain (Fig. 6b). When the loss converges, the two GANs reach their equilibriums, which 
means that the discriminators cannot distinguish images produced by their generators from the target images. 
An image could be mapped back to itself through the sequential processing of the two generators, and more 
importantly for biomedical images, the saliency map keeps high fidelity after each transformation (Fig. 6a). The 
well-trained generator G of the forward GAN is used for transformation task from UV images to H&E images 
(Fig. 6c).

The architectures of the generator and the discriminator are visualized in Fig. 6b. The first three layers of the 
generator are downsampling layers implemented by strided convolution to extract low-level abstract represen-
tations. Nine stacked residual blocks are followed to extract high-level features. The number of residual blocks 
reflects the model capacity. More residual blocks are recommended for more complex tasks. It is important to 
note that to reduce the training cost and obtain a comparably good performance, we used the Residual block 
generator instead of U-Net. The residual block design can also alleviate the problem of vanishing/exploding 
gradients when deeper networks are adopted, and converge much faster than standard  solvers60,84. The last three 
upsampling layers are also implemented by strided convolution. They are used to integrate extracted features and 
rescale the image to its original size. The discriminator is a relatively shallow CNN. Each layer downsamples the 
feature maps but doubles the channel number. The last convolution layer generates a single-channel feature map 
and classification is performed on each element of this feature map (PatchGAN classifier). The final true or false 
label is generated by averaging individual labels of all elements. Each convolution layer in both the generator and 
the discriminator contains a nonlinear activation unit. Whether to use the sigmoid function or rectified linear 
unit (ReLU) is marked with corresponding arrows in Fig. 6b.

The Adam optimizer was used to optimize network  parameters60. The initial learning rate is 0.0002, which 
decays linearly every 50 iterations with a rate of 0.99. The batch size was set to 1 and the images were flipped 
randomly for data augmentation. We trained the network for about 5 epochs, with about 80000 iterations in 
each epoch. On a single NVIDIA GEFORCE RTX 2080 Ti GPU (11GB memory), the whole training prcess took 
approximately 48h. After training, UTOM took 21ms to generate a 512 × 512 H&E patch and cost 3s to produce 
a whole-slide HE image.

We used a PC system with an Ubuntu 16.04 LTS operating system and a CPU Intel(R) Xeon(R) CPU E5-2683 
processing unit. Also a PyTorch 1.6 was used as the Deep Learning Framework and Python 3.7 for image 
processing.

Virtual H&E evaluation methodology. We prepared a web-based survey including 21 unidentified, 
mixed H&E and virtual H&E regions (group 1, 10 H&E and 11 Virtual H&E and group 2, 11 H&E and 10 virtual 
H&E images of the same regions) and asked 2 board-certified and 2 board-eligible pathologists to submit their 
evaluations of the quality of parameters such as nucleus, cytoplasm and gland quality. Further, we asked them 
to submit a Gleason Score for each region to compare the accuracy of diagnosis for both H&E and virtual H&E 
images. Each question was based on the scale of 1 to 3 (1 for poor, 2 for moderate and 3 for very good qual-
ity). The responses were downloaded and used for statistical analysis. This clinical panel review protocol (no. 
H19389) was Institutional Review Board-exempt.

Data availability
Additional Colorized Images along with the corresponding H&E references are available at: https:// zenodo. org/ 
record/ 51403 34.
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